Novel Method Based on Spin-Coating for the Preparation of 2D and 3D Si-Based Anodes for Lithium Ion Batteries

نویسندگان

  • Marie Gabard
  • Mustapha Zaghrioui
  • David Chouteau
  • Virginie Grimal
  • Thomas Tillocher
  • Fouad Ghamouss
  • Nathalie Poirot
چکیده

The present study describes a novel strategy for preparing thin Silicon 2D and 3D electrodes for lithium ion batteries by a spin coating method. A homogeneous and stable suspension of Si nanoparticles (SiNPs) was prepared by dispersing the nanoparticles in 1-methyl-2-pyrrolidone (NMP) or in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI). This proposed methodology was successfully employed to prepare 2D and 3D with different aspect ratios electrodes. Both 2D and 3D materials were then used as anode materials. The 2D SiNPs anodes exhibit a high reversible capacity, which is close to 3500 mAh·g−1 at C/10. For a higher discharge rate, the capacity of the 2D anode is considerably improved by dispersing the nanoparticles in Pyr14TFSI instead of NMP solvent. In order to further improve the anode performances, graphene particles were added to the SiNPs suspension. The anodes prepared using this suspension method exhibit relatively low columbic efficiency during the first few cycles (less than 30%) and low reversible capacity (2800 mAh·g−1 at C/10). The 3D SiNPs (NMP) electrode shows a higher intensity during cyclic voltammograms and a better stability under galvanostatic cycling than the 2D SiNPs (NMP) electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

Carbon scaffold structured silicon anodes for lithium-ion batteries

A unique methodology of fabricating Si anodes for lithium-ion batteries with porous carbon scaffold structure is reported. Such carbon scaffold Si anodes are fabricated via carbonization of porous Si-PVdF precursors which are directly deposited on the current collector. Unlike the conventional slurry casting method, binder and conductive additives are not used in the preparation of the carbon s...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries.

Silicon core-hollow carbon shell nanocomposites with controllable voids between silicon nanoparticles and hollow carbon shell were easily synthesized by a two-step coating method and exhibited different charge-discharge cyclability as anodes for lithium-ion batteries. The best capacity retention can be achieved with a void/Si volume ratio of approx. 3 due to its appropriate volume change tolera...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017